Immunotherapy Shows Promise in Bladder Cancer Treatment

November 18, 2015
Virginia Powers, PhD

Bladder cancer may soon catch up to other areas of oncology in terms of an influx of immunotherapies, according to Thomas Powles, MD.

Thomas Powles, MD

Bladder cancer may soon catch up to other areas of oncology in terms of an influx of immunotherapies, according to a summation of ongoing studies1presented by Thomas Powles, MD, medical oncologist, director, St Bartholomew's Cancer Centre, London, at the 7th European Multidisciplinary Meeting on Urological Cancers (EMUC).

"Immune therapy is a promising new treatment in transitional cell carcinoma [TCC] of the bladder. Until recently, bladder cancer research has been somehow left behind," said Powles.

Powles' talk focused on agents targeting the immune checkpoint axis, specifically the programed death receptor (PD1) and its ligand (PD-L1), as well as the active nature of immune checkpoint inhibitors in urothelial bladder cancer (UBC).

"Each drug has a unique companion diagnostic but the strongest data so far are seen with blocking PD-L1 and atezolizumab,” he said. "We hope that immune therapy will identify a subset of patients who get long-term benefits from immune therapy."

The confirmed overall response rate (ORR) published by RECIST to atezolizumab are associated with PD-L1 expression levels in the tumor.

In a phase I trial of second line atezolizumab (MPDL3280A) in TCC, a response was demonstrated in patients that had previously showed a 10% response rate to chemotherapy. The ORRs were 43% for patients with tumors expressing high levels of PD-L1 (IHC 2/3) compared to 11% in patients with tumors having low expression (IHC 0 or 1).2

PD-L1 expression on the immune cells (IC) infiltrating the tumor had shown to be associated with response. The ICs PD-L1 expression was evaluated as low, medium, and high in approximately one-third of each of the 311 patients with locally-advanced or metastatic urothelial carcinoma (mUC) participating in the phase II IMvigor 210 trial. This trial corresponded to an ORR with atezolizumab of 9%, 10%, and 27% in the respective expression groups.

Overall survival (OS) at a median follow-up of 7 months (range, 0-11) also correlated with expression levels and was 6.7 months in low (IC0/1), not reached in high (IC2/3) expressing patients, and 7.9 months in overall population. However, no difference was seen in progression-free survival (PFS) according to expression levels; median PFS was2.1months in the overall population and in patients having both low (IC0/1) and high (IV2/3) expression levels, respectively. These data were emphasized as early response data that are expected to mature in further analyses.3

Powles said his team is beginning a phase III randomized trial of atezolizumab in 767 patients with locally-advanced UBC who were also chemotherapy-resistant following 1 to 2 prior lines of a platinum-based regimen. Patients have been stratified by chemotherapy regimen, PD-L1 expression, IHC status, risk factors, and the presence of liver metastasis. The primary endpoint is OS and secondary endpoints include ORR, PFS, and duration of response (DoR), safety, and tolerability. Other objectives include disease control rate and potential biomarkers.

"PD-L1 expression appears important but we need to find other biomarkers," he remarked.

Powles moved on to discuss the KEYNOTE-012 phase Ib trial of pembrolizumab, an anti-PD1 antibody that blocks interaction with both PD-L1 and PD-L2. In KEYNOTE, pembrolizumab demonstrated anti-tumor activity in patients with recurrent or metastatic PD-L1—positive UBC in 64% of patients experiencing a decrease in target lesions from baseline.4

Combination and adjuvant studies are ongoing, according to Powles. A trial of atezolizumab as adjuvant therapy versus placebo is underway in patients with TCC whose tumors express PD-L1. The trial has a primary endpoint of disease-free survival (DFS).

"Next-generation combination therapy with nivolumab plus ipilimumab is a common sense approach that was tested in advanced melanoma and is now being evaluated in the Danube trial," Powles said.

Nivolumab, a PD-1 blocking antibody, and ipilimumab, which blocks CTLA-4, will be evaluated in Danube, a randomized phase III study that will enroll 800 patients with untreated metastatic TCC. The endpoints are PFS and OS. Patients are required to have available tissue for PD-L1 testing and no contraindications for immune therapy.

The rationale for the combination was demonstrated in melanoma, where confirmed objective responses were seen in 61% of patients receiving nivolumab plus ipilimumab versus 11% in patients receiving ipilimumab and placebo (P<0.001). Complete responses were reported in 16 patients (22%) with combination compared to no patients receiving ipilimumab monotherapy.5

"It looks like checkpoint inhibition works particularly well in node positive patients; in the future we can see treatment with first-line immunotherapeutic agents," said Powles. "The future looks bright for immunotherapy in bladder cancer."

References

  1. Powles T. Update on systemic treatments in bladder cancer. Presented at: 7th European Multidisciplinary Meeting on Urological Cancers (EMUC), Barcelona, Spain, November 12—15, 2015.
  2. Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558-562.
  3. Rosenberg J, Petrylak D, Abidoye O, et al. Atezolizumab in patients (pts) with locally-advanced or metastatic urothelial carcinoma (mUC): Results from a pivotal multicenter phase II study (IMvigor 210). Presented at: 2015 European Cancer Congress; September 25-29; Vienna, Austria. Abstract 21LBA.
  4. Plimack ER, Bellmunt J, Gupta S, et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: Updated results and biomarker analysis from KEYNOTE-012. J Clin Oncol 33, 2015 (suppl; abstr 4502).
  5. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015; 373:23-34.